China Professional Industrial Transmission Gear Reducer Conveyor Parts Transmission Gearbox Parts Conveyor Belt High Precision Motorcycle Engine Silent Chains

Product Description

 Chain No.

Pitch
P
mm

Chain width

b max
mm

Pin diameter

d2 min
mm

Pin length

L
max
mm

Distance from
hole center to tooth
h1 mm

Plate depth

h2 max
mm

Plate thickness

t/T max
mm

Xihu (West Lake) Dis. type

Number of plates

n

Tensile strength

Q
min
kN/lbf

Average tensile strength

Q0
kN

Weight per meter
q kg/m

CL04-2×3 6.35 4.35 2.50 6.05 3.94 6.80 1.04/0.75 Outside 5(2 3) 5.19/1179 5.4 0.22
CL04-3×4 6.35 6.35 2.50 8.20 3.90 6.72 1.04/0.75 Outside 7(3 4) 8.82/2004 9.2 0.28
CL04-4×5 6.35 9.40 2.50 10.90 3.90 6.72 1.04 Outside 9(4 5) 11.76/2672 12.3                              0.35

ISO
Chain No.
Chain No. Pitch P
mm
Roller diameter
d1max
mm
Width between inner plates
b1min
mm
Pin diameter
d2max
mm
Pin length Inner plate depth
h2max
Plate thickness
t/Tmax
Tensile strength
Qmin
Average tensile strength
Q0
Weight per meter
q
Lmax Lcmax
mm mm mm mm kN/lbf kN kg/m
9.525   6 9.5 4.5 18.6 20 9.3 1.85/1.50 11.80/2653 13.6 0.61
420 420 12.7 7.77 6.25 3.96 14.7 16.1 12 1.5 16.00/3597 17.6 0.55
420F3 12.7 7.77 6.4 3.97 15 16.6 11.8 1.60/1.45 16.00/3597 17.6 0.64
420HF1 12.7 7.77 6.25 3.96 17 18.4 12 2.03 16.00/3597 17.6 0.76
420HT 12.7 7.77 6.25 3.96 17 12 2.03 21.40/4811 23.5 0.76
428 428 12.7 8.51 7.75 4.45 16.7 18.2 11.8 1.6 17.80/4002 19.6 0.7
428F1 12.7 8.51 7.94 4.5 16.7 18.05 11.8 1.6 17.15/3855 19.4 0.71
428DS 12.7 8.51 7.94 4.45 17.9 19.3 12 1.85 18.62/4186 21 0.76
428MH 428H 12.7 8.51 7.85 4.45 18.8 19.9 11.8 2.03 20.60/4631 23.4 0.79
428HF1 12.7 8.51 7.85 4.45 17.9 19 11.8 1.8 19.50/4384 20.7 0.74
428HSH 12.7 8.51 7.75 4.45 20 12 2.42 27.00/6070 29.4 0.89
428HF4 12.7 8.51 7.94 4.5 18.9 20.1 11.8 2.03 20.50/4609 23.4 0.82
428HD 12.7 8.51 7.85 4.45 18.8 19.9 11.8 2.03 20.60/4631 23.4 0.85
428F3 12.7 8.51 7.85 4.45 16.7 18.2 11.7 1.6 17.80/4002 19.6 0.77
428F4 12.7 8.51 7.85 4.45 16.7 18.2 11.8 1.6 17.80/4002 19.6 0.72
520 520 15.875 10.16 6.25 5.08 17.5 19 15.09 2.03 26.50/5957 29.7 0.89
520F2 15.875 10.16 6.35 5.24 17.5 19.05 15.09 2.03 26.50/5957 29.7 0.97
520F3 15.875 10.16 6.48 5.08 17.5 19 15.09 2.03 26.50/5957 29.7 0.89
520MH 520MH 15.875 10.22 6.25 5.25 19 21.2 15.3 2.2 30.50/6857 33.6
520HD 15.875 10.16 6.35 5.34 18.6 20 15.09 2.2 35.00/7868 38.5 1.04
525 525 15.875 10.16 7.95 5.08 19.3 20.7 15.09 2.03 26.50/5957 29.7 1.06
525MH 525MH 15.875 10.22 7.85 5.25 21.2 23.2 15.3 2.2 30.50/6857 33.6
525HF1 15.875 10.16 7.95 5.08 20.9 22.3 15.09 2.42 26.50/5957 29.7 1.2
530 530 15.875 10.16 9.4 5.08 20.7 22.2 15.09 2.03 26.50/5957 29.7 1.06
530SH 15.875 10.16 9.4 5.08 22.1 15.09 2.42 32.80/7374 33.5 1.24
520F12 15.875 10.16 6.25 5.25 17.6 15 2.03 29.43/6615 32.3 0.98
520HF7 15.875 10.22 7.8 5.3 21.35 15.3 2.8/2.42 40.00/8992 44 1.43
630 630 19.05 11.91 9.4 5.94 23 24.8 18 2.42 35.30/7936 38.8

Chain No.

Pitch

P
mm

Roller diameter

d1 max
mm

Width between
inner plates

b1 min
mm

Pin diameter

d2 max
mm

Pin length Inner plate
depth

h2 max
mm

Plate thickness

T
max
mm

Tensile strength

Q
min
kN/lbf

Average tensile
strength

Q0
kN

Weight per
meter
q kg/m
Lmax
mm
Lcmax
mm
420 OR 12.700 7.77 6.25 3.96 16.65 17.95 12.00 1.50 16.0/3599 17.00 0.62
420H OR 12.700 7.77 6.25 3.96 18.80 20.10 12.00 2.03 16.0/3599 17.00 0.74
428HVS 12.700 8.51 7.94 4.45 21.70 22.70 12.30 2.03 22.0/4946 23.00 0.85
50LD 15.875 10.16 9.53 5.08 23.40 24.60 15.09 2.03 22.2/5045 26.50 1.12
520 OR 15.875 10.16 6.70 5.30 21.20 22.30 15.09 2.20 32.0/7200 34.00 1.11
520F1 OR 15.875 10.16 6.25 5.30 21.20 22.30 15.09 2.20 32.0/7200 34.00 1.09
520F2 OR 15.875 10.16 9.65 5.30 24.10 25.50 15.09 2.20 32.0/7200 34.00 1.21
520V6 15.875 10.16 6.25 5.08 19.80 21.30 15.09 2.03 22.2/5045 26.50 0.96
520H OR 15.875 10.16 6.25 5.24 21.52 22.92 15.09 2.42 26.5/6571 29.60 1.26
525 OR 15.875 10.16 7.95 5.30 21.50 22.90 15.09 2.03 26.5/6571 29.60 1.30
525F1 OR 15.875 10.16 7.95 5.30 23.10 24.00 15.09 2.20 32.0/7200 34.00 1.16
520F14 OR 15.875 10.20 6.25 5.09 19.90 14.90 1.80 28.4/6391 30.60 0.92
525H OR 15.875 10.16 7.95 5.30 23.10 24.50 15.09 2.42 26.5/6571 29.60 1.44
530H OR 15.875 10.16 9.53 5.24 24.80 26.20 15.09 2.42 29.0/6524 30.00 1.39
630F1 OR 19.050 11.91 9.53 5.94 25.50 27.30 18.00 2.42 31.8/7149 35.00 1.50

 

ISO
Chain No.

Chain No.

Pitch

P
mm

Bush diameter

d1 max
mm

Width between
inner plates
b1 min
mm
Pin diameter

d2 max
mm

Pin length

L
max
mm

Inner plate
depth
h2 max
mm
Plate thickness

t/T max
mm

Tensile strength

Q
min
kN/lbf

Average tensile
strength
Q0
kN
Weight per
meter
q kg/m
25 6.350 3.30 3.18 2.31 7.90 6.00 0.80 3.5/795 4.6 0.15
25H 25H 6.350 3.30 3.18 2.31 8.90 6.00 1.04 4.8/1091 5.5 0.17
25H(E) 6.350 3.30 3.18 2.31 8.90 6.00 1.04 5.8/1304 6.4 0.18
25HF2 6.350 3.30 3.18 2.31 9.10 5.80 1.2/1.10 5.8/1304 6.4 0.19
25SHF1 6.350 3.30 3.18 2.01 8.95 5.90 1.04 4.8/1091 5.5 0.19
219H 219H 7.774 4.59 5.00 3.01 11.90 7.40 1.2/1.04 7.3/1641 8.0 0.28
*C219H 7.774 4.59 5.00 3.01 11.90 7.40 1.2/1.04 7.3/1641 8.0 0.33
219HT 7.774 4.59 4.60 3.01 12.15 7.55 1.4/1.3 6.6/1483 7.2 0.33
219HF2 7.774 4.59 4.50 3.01 11.90 7.40 1.4/1.3 6.6/1483 7.2 0.31
219HF1 7.785 4.60 4.50 3.28 13.00 7.00 2.0/1.40 9.0/2571 9.8 0.37
270H 270H 8.500 5.00 4.75 3.28 13.15 8.45 1.8/1.40 10.8/2428 11.9 0.43

Package & Delivery

SMCC Chains is 1 of the most widely used and welcome products in the market. Its continuous innovative development is suitable to be the solutions for many conditions, standard roller chains, motorcycle driving chain, O-ring motorcycle chain, high strength roller chain, conveyor chains, agricultural driving chain, galvanized chain, nickel-plated chain, lubrication-free chain and oilfield chain etc.

Our CZPT chain was produced by machinery processing from raw materials to finished products and a full set of quality testing equipment. Mechanical processing equipment include grinding machines, high speed punching machines, milling machines, high speed automatic rolling and assembling machine. Heat treatment was processed by continuous mesh belt conveyor furnace, mesh belt conveyor annealing furnace, advanced central control system of heat treatment, rotary CZPT for chain component heat treatment, which ensure the stability and consistency of the key function of chain components.
We are the best suppliers of Chinese largest palletizing robot enterprises. These items are durable quality with affordable prices, replace of Japan chains, ZheJiang chains exported to Europe, America, Asia and other countries and regions.

 

CONSTRUCTION OF THE CHAIN

Two different sizes of roller chain, showing construction.
There are 2 types of links alternating in the bush roller chain. The first type is inner links, having 2 inner plates held together by 2 sleeves or bushings CZPT which rotate 2 rollers. Inner links alternate with the second type, the outer links, consisting of 2 outer plates held together by pins passing through the bushings of the inner links. The “bushingless” roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing 1 step in assembly of the chain.

The roller chain design reduces friction compared to simpler designs, resulting in higher efficiency and less wear. The original power transmission chain varieties lacked rollers and bushings, with both the inner and outer plates held by pins which directly contacted the sprocket teeth; however this configuration exhibited extremely rapid wear of both the sprocket teeth, and the plates where they pivoted on the pins. This problem was partially solved by the development of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the wear over a greater area; however the teeth of the sprockets still wore more rapidly than is desirable, from the sliding friction against the bushings. The addition of rollers surrounding the bushing sleeves of the chain and provided rolling contact with the teeth of the sprockets resulting in excellent resistance to wear of both sprockets and chain as well. There is even very low friction, as long as the chain is sufficiently lubricated. Continuous, clean, lubrication of roller chains is of primary importance for efficient operation as well as correct tensioning.

LUBRICATION

Many driving chains (for example, in factory equipment, or driving a camshaft inside an internal combustion engine) operate in clean environments, and thus the wearing surfaces (that is, the pins and bushings) are safe from precipitation and airborne grit, many even in a sealed environment such as an oil bath. Some roller chains are designed to have o-rings built into the space between the outside link plate and the inside roller link plates. Chain manufacturers began to include this feature in 1971 after the application was invented by Joseph Montano while working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to improve lubrication to the links of power transmission chains, a service that is vitally important to extending their working life. These rubber fixtures form a barrier that holds factory applied lubricating grease inside the pin and bushing wear areas. Further, the rubber o-rings prevent dirt and other contaminants from entering inside the chain linkages, where such particles would otherwise cause significant wear.[citation needed]

There are also many chains that have to operate in dirty conditions, and for size or operational reasons cannot be sealed. Examples include chains on farm equipment, bicycles, and chain saws. These chains will necessarily have relatively high rates of wear, particularly when the operators are prepared to accept more friction, less efficiency, more noise and more frequent replacement as they neglect lubrication and adjustment.

Many oil-based lubricants attract dirt and other particles, eventually forming an CZPT paste that will compound wear on chains. This problem can be circumvented by use of a “dry” PTFE spray, which forms a CZPT film after application and repels both particles and moisture.

MOTORCYCLE CHAIN LUBRICATION

Chains operating at high speeds comparable to those on motorcycles should be used in conjunction with an oil bath. For modern motorcycles this is not possible, and most motorcycle chains run unprotected. Thus, motorcycle chains tend to wear very quickly relative to other applications. They are subject to extreme forces and are exposed to rain, dirt, sand and road salt.

Motorcycle chains are part of the drive train to transmit the motor power to the back wheel. Properly lubricated chains can reach an efficiency of 98% or greater in the transmission. Unlubricated chains will significantly decrease performance and increase chain and sprocket wear.

Two types of CZPT lubricants are available for motorcycle chains: spray on lubricants and oil drip feed systems.

Spray lubricants may contain wax or PTFE. While these lubricants use tack additives to stay on the chain they can also attract dirt and sand from the road and over time produce a grinding paste that accelerates component wear.
Oil drip feed systems continuously lubricate the chain and use light oil that does not stick to the chain. Research has shown that oil drip feed systems provide the greatest wear protection and greatest power saving.

VARIANTS DESIGN

Layout of a roller chain: 1. Outer plate, 2. Inner plate, 3. Pin, 4. Bushing, 5. Roller
If the chain is not being used for a high wear application (for instance if it is just transmitting motion from a hand-operated lever to a control shaft on a machine, or a sliding door on an oven), then 1 of the simpler types of chain may still be used. Conversely, where extra strength but the smooth drive of a smaller pitch is required, the chain may be “siamesed”; instead of just 2 rows of plates on the outer sides of the chain, there may be 3 (“duplex”), 4 (“triplex”), or more rows of plates running parallel, with bushings and rollers between each adjacent pair, and the same number of rows of teeth running in parallel on the sprockets to match. Timing chains on automotive engines, for example, typically have multiple rows of plates called strands.

Roller chain is made in several sizes, the most common American National Standards Institute (ANSI) standards being 40, 50, 60, and 80. The first digit(s) indicate the pitch of the chain in eighths of an inch, with the last digit being 0 for standard chain, 1 for lightweight chain, and 5 for bushed chain with no rollers. Thus, a chain with half-inch pitch would be a #40 while a #160 sprocket would have teeth spaced 2 inches apart, etc. Metric pitches are expressed in sixteenths of an inch; thus a metric #8 chain (08B-1) would be equivalent to an ANSI #40. Most roller chain is made from plain carbon or alloy steel, but stainless steel is used in food processing machinery or other places where lubrication is a problem, and nylon or brass are occasionally seen for the same reason.

Roller chain is ordinarily hooked up using a master link (also known as a connecting link), which typically has 1 pin held by a horseshoe clip rather than friction fit, allowing it to be inserted or removed with simple tools. Chain with a removable link or pin is also known as cottered chain, which allows the length of the chain to be adjusted. Half links (also known as offsets) are available and are used to increase the length of the chain by a single roller. Riveted roller chain has the master link (also known as a connecting link) “riveted” or mashed on the ends. These pins are made to be durable and are not removable.

USE

An example of 2 ‘ghost’ sprockets tensioning a triplex roller chain system
Roller chains are used in low- to mid-speed drives at around 600 to 800 feet per minute; however, at higher speeds, around 2,000 to 3,000 feet per minute, V-belts are normally used due to wear and noise issues.
A bicycle chain is a form of roller chain. Bicycle chains may have a master link, or may require a chain tool for removal and installation. A similar but larger and thus stronger chain is used on most motorcycles although it is sometimes replaced by either a toothed belt or a shaft drive, which offer lower noise level and fewer maintenance requirements.
The great majority of automobile engines use roller chains to drive the camshaft(s). Very high performance engines often use gear drive, and starting in the early 1960s toothed belts were used by some manufacturers.
Chains are also used in forklifts using hydraulic rams as a pulley to raise and lower the carriage; however, these chains are not considered roller chains, but are classified as lift or leaf chains.
Chainsaw cutting chains superficially resemble roller chains but are more closely related to leaf chains. They are driven by projecting drive links which also serve to locate the chain CZPT the bar.

Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle – the nozzle is rotated by a chain drive from an air motor
A perhaps unusual use of a pair of motorcycle chains is in the Harrier Jump Jet, where a chain drive from an air motor is used to rotate the movable engine nozzles, allowing them to be pointed downwards for hovering flight, or to the rear for normal CZPT flight, a system known as Thrust vectoring.

WEAR

 

The effect of wear on a roller chain is to increase the pitch (spacing of the links), causing the chain to grow longer. Note that this is due to wear at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel components such as the hand-brake cable of a motor vehicle).

With modern chains it is unusual for a chain (other than that of a bicycle) to wear until it breaks, since a worn chain leads to the rapid onset of wear on the teeth of the sprockets, with ultimate failure being the loss of all the teeth on the sprocket. The sprockets (in particular the smaller of the two) suffer a grinding motion that puts a characteristic hook shape into the driven face of the teeth. (This effect is made worse by a chain improperly tensioned, but is unavoidable no matter what care is taken). The worn teeth (and chain) no longer provides smooth transmission of power and this may become evident from the noise, the vibration or (in car engines using a timing chain) the variation in ignition timing seen with a timing light. Both sprockets and chain should be replaced in these cases, since a new chain on worn sprockets will not last long. However, in less severe cases it may be possible to save the larger of the 2 sprockets, since it is always the smaller 1 that suffers the most wear. Only in very light-weight applications such as a bicycle, or in extreme cases of improper tension, will the chain normally jump off the sprockets.

The lengthening due to wear of a chain is calculated by the following formula:

M = the length of a number of links measured

S = the number of links measured

P = Pitch

In industry, it is usual to monitor the movement of the chain tensioner (whether manual or automatic) or the exact length of a drive chain (one rule of thumb is to replace a roller chain which has elongated 3% on an adjustable drive or 1.5% on a fixed-center drive). A simpler method, particularly suitable for the cycle or motorcycle user, is to attempt to pull the chain away from the larger of the 2 sprockets, whilst ensuring the chain is taut. Any significant movement (e.g. making it possible to see through a gap) probably indicates a chain worn up to and beyond the limit. Sprocket damage will result if the problem is ignored. Sprocket wear cancels this effect, and may mask chain wear.

BICYCLE CHAIN WEAR

The lightweight chain of a bicycle with derailleur gears can snap (or rather, come apart at the side-plates, since it is normal for the “riveting” to fail first) because the pins inside are not cylindrical, they are barrel-shaped. Contact between the pin and the bushing is not the regular line, but a point which allows the chain’s pins to work its way through the bushing, and finally the roller, ultimately causing the chain to snap. This form of construction is necessary because the gear-changing action of this form of transmission requires the chain to both bend sideways and to twist, but this can occur with the flexibility of such a narrow chain and relatively large free lengths on a bicycle.

Chain failure is much less of a problem on hub-geared systems (e.g. Bendix 2-speed, Sturmey-Archer AW) since the parallel pins have a much bigger wearing surface in contact with the bush. The hub-gear system also allows complete enclosure, a great aid to lubrication and protection from grit.

CHAIN STRENGTH

The most common measure of roller chain’s strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain’s fatigue strength. The critical factors in a chain’s fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain’s tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

WHY CHOOSE US

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

 

 

 

Shipping Cost:

Estimated freight per unit.



To be negotiated
After-sales Service: 7*24hours
Warranty: 1 Year
Type: Chain
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

gear chain

How does a gear chain handle different speeds and loads?

A gear chain is designed to handle different speeds and loads by incorporating specific features and materials:

1. Gear Ratio Selection:

– The gear ratio is the ratio of the number of teeth on the driving gear to the number of teeth on the driven gear. By selecting the appropriate gear ratio, the speed and torque can be adjusted to match the requirements of the application. Higher gear ratios provide lower speed and higher torque, while lower gear ratios offer higher speed and lower torque.

2. Gear Tooth Design:

– The tooth design of a gear chain is optimized to distribute the load evenly across the teeth. This ensures that each tooth can handle its share of the load without excessive stress concentration. The tooth profile and pitch are carefully calculated to provide efficient power transmission and minimize wear.

3. Material Selection:

– Gear chains are typically made from high-strength materials, such as alloy steel or hardened steel, to withstand the loads and stresses imposed on them. The material selection is based on the anticipated loads and the desired durability of the chain. Heat treatment processes, such as quenching and tempering, are often employed to further enhance the strength and toughness of the chain.

4. Lubrication:

– Proper lubrication is crucial for the smooth operation and longevity of a gear chain. Lubricants reduce friction and wear between the gear teeth, allowing the chain to handle higher speeds and loads with reduced heat generation. Lubrication also helps to prevent corrosion and extend the chain’s service life.

5. Chain Tension:

– Maintaining proper chain tension is essential for optimal performance. Adequate tension ensures proper engagement of the gear teeth and prevents excessive slack or binding. Chain tensioners or tensioning devices may be used to adjust the tension and compensate for any elongation or wear that occurs over time.

6. System Design:

– The overall design of the gear chain system, including the selection of supporting components such as gears, bearings, and shafts, plays a vital role in handling different speeds and loads. The system must be engineered to provide adequate strength, alignment, and support to ensure reliable operation under varying conditions.

By carefully considering gear ratio selection, tooth design, material selection, lubrication, chain tension, and system design, a gear chain can effectively handle different speeds and loads. It provides efficient power transmission and reliable performance in a wide range of applications.

gear chain

Can a gear chain be used in corrosive or harsh environments?

A gear chain can be used in corrosive or harsh environments depending on its material composition and protective measures. Here are some considerations:

1. Material Selection: Choose a gear chain made from materials that are resistant to corrosion and can withstand harsh conditions. Stainless steel, for example, is commonly used in such environments due to its corrosion resistance.

2. Coatings and Surface Treatments: Apply specialized coatings or surface treatments to the gear chain to enhance its resistance to corrosion and protect it from harsh chemicals or abrasive substances.

3. Sealing and Enclosures: Use appropriate sealing mechanisms and enclosures to prevent contaminants, moisture, and corrosive agents from reaching the gear chain. This can include sealed housings, gaskets, or protective covers.

4. Regular Maintenance: Implement a thorough maintenance program to inspect, clean, and lubricate the gear chain regularly. This helps remove any accumulated debris or corrosive substances and ensures proper functioning.

5. Environmental Controls: Control the environmental conditions such as temperature, humidity, and exposure to corrosive elements in the working environment. This may involve installing ventilation systems, implementing protective barriers, or using specialized enclosures.

However, it’s important to note that even with these measures, the performance and lifespan of a gear chain in corrosive or harsh environments may be reduced compared to operating in normal conditions. Therefore, careful consideration should be given to the specific environmental factors and the suitability of the gear chain for the intended application.

gear chain

What is a gear chain and how does it work?

A gear chain, also known as a roller chain with sprockets, is a type of power transmission chain that is commonly used to transfer rotational motion between two parallel shafts. It consists of a series of interconnected links, known as roller links, which engage with teeth on sprockets to transmit power.

The basic components of a gear chain include:

– Roller Links: These are the individual links that form the chain. They have cylindrical rollers that are connected by side plates.

– Pins: The pins hold the roller links together and allow them to rotate freely.

– Bushings: The bushings are inserted into the roller links and provide a smooth surface for the pins to rotate on.

– Sprockets: The sprockets are toothed wheels that engage with the roller links. They are mounted on the shafts and transmit power by engaging with the rollers.

The operation of a gear chain is based on the principle of meshing between the teeth of the sprockets and the rollers of the chain. When one sprocket is rotated, the engaged rollers are driven, causing the entire chain to move and transmit power to the other sprocket.

The meshing between the sprocket teeth and chain rollers ensures a positive and efficient power transfer. The roller links rotate on the pins and bushings, allowing the chain to smoothly engage and disengage with the sprockets during operation.

Gear chains are widely used in various applications, such as industrial machinery, automotive systems, bicycles, and conveyors, where reliable and efficient power transmission is required.

China Professional Industrial Transmission Gear Reducer Conveyor Parts Transmission Gearbox Parts Conveyor Belt High Precision Motorcycle Engine Silent Chains  China Professional Industrial Transmission Gear Reducer Conveyor Parts Transmission Gearbox Parts Conveyor Belt High Precision Motorcycle Engine Silent Chains
editor by CX 2023-09-05

Tags: belt | belt chains conveyor | chains | chains belt conveyor | chains belt conveyor parts | chains conveyor | chains conveyor belt | chains conveyor chains | chains conveyor conveyor | chains conveyor parts | chains gear | chains gearbox | chains transmission | china chains | china chains conveyor | china chains conveyor belt | china conveyor belt chains | china conveyor chains | china gearbox | conveyor belt chains | conveyor belt gearbox | conveyor belt parts belt chains | conveyor belt parts chains | conveyor chains | conveyor chains belt | conveyor chains parts | conveyor reducer | engine gear | engine gearbox | engine transmission gear | engine transmission gearbox | Gear | gear belt | gear chains | gear gearbox | gear parts | gear reducer | gear reducer gearbox | gear transmission | gearbox | gearbox china | gearbox engine | gearbox gear | gearbox motorcycle | gearbox parts | gearbox reducer | gearbox transmission | high gear | high precision gearbox | industrial chains | industrial chains conveyor | industrial conveyor belt chains | industrial conveyor chains | industrial gear | industrial gearbox | motorcycle chains | motorcycle engine gear | motorcycle gear | motorcycle gearbox | motorcycle gearbox transmission | motorcycle transmission gearbox | parts gear | precision gear | precision gear reducer | precision gearbox | precision reducer | reducer | reducer gearbox | silent chains | transmission chains | transmission gear | transmission gearbox | transmission gearbox parts

gear chains

As one of leading gear chains manufacturers, suppliers and exporters of mechanical products, We offer gear chains and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of gear chains

Recent Posts